设函数.(1)求的单调递增区间;(2)已知△ABC中,角A,B,C的对边分别为a,b,c.若,,求a的最小值.
如图,在四棱锥中,底面是正方形,底面,, 点是的中点,,且交于点.(Ⅰ)求证:平面;(Ⅱ)求证:平面⊥平面;(Ⅲ)求二面角的余弦值.
某高中数学竞赛培训在某学段共开设有初等代数、平面几何、初等数论和微积分初步共四门课程,要求初等数论、平面几何都要合格,且初等代数和微积分初步至少有一门合格,则能取得参加数学竞赛复赛的资格.现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同(见下表),且每一门课程是否合格相互独立.(Ⅰ)求甲同学取得参加数学竞赛复赛的资格的概率;(Ⅱ)记表示三位同学中取得参加数学竞赛复赛的资格的人数,求的分布列及期望.
如图,在平面四边形中,.(1)求的值;(2)若,,求的长.
设,且.(1);(2)与不可能同时成立.
已知直线(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)将曲线C的极坐标方程化为直角坐标方程;(2)设点的直角坐标为,直线与曲线C 的交点为,,求的值.