如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.
如图,已知锐角 △ ABC 的面积为 1 ,正方形 DEFG 是 △ ABC 的一个内接四边形, DG / / BC ,求正方形 DEFG 面积的最大值.
图1是一种手机托架,使用该手机托架示意图如图3所示,底部放置手机处宽 AB = 1 . 2 cm ,托架斜面长 BD = 6 cm ,它有 C 到 F 共4个挡位调节角度,相邻两个挡位间的距离为 0 . 8 cm ,挡位 C 到 B 的距离为 2 . 4 cm .将某型号手机置于托架上(图2,手机屏幕长 AG 是 15 cm , O 是支点且 OB = OE = 2 . 5 cm (支架的厚度忽略不计).求:
(1)当支架调到 E 挡时,点 G 离水平面的距离 GH 为多少厘米;
(2)当支架从 E 挡调到 F 挡时,点 D 离水平面的距离下降了多少厘米.
如图,开口向下的抛物线 y = a x 2 - 8 ax + 12 a 与 x 轴交于 A , B 两点,抛物线上另有一点 C 在第一象限,且使 △ OCA ∼ △ OBC .
(1)求 OC 的长及 BC : AC 的值;
(2)设直线 BC 与 y 轴交于 P 点,点 C 是 BP 的中点时,求直线 BP 和抛物线的解析式.
如图,点 D 在以 AB 为直径的 ⊙ O 上,过 D 作 ⊙ O 的切线交 AB 的延长线于点 C , AE ⊥ CD 于点 E ,交 ⊙ O 于点 F ,连接 AD , FD .
(1)求证: ∠ DAE = ∠ DAC ;
(2)求证: DF ⋅ AC = AD ⋅ DC ;
(3)若 sin ∠ C = 1 4 , AD = 4 10 ,求 EF 的长.
如图,在平面直角坐标系 xOy 中,抛物线 y = - 1 4 x 2 + 3 2 x + 4 与两坐标轴分别相交于 A , B , C 三点.
(1)求证: ∠ ACB = 90 ∘ ;
(2)点 D 是第一象限内该抛物线上的动点,过点 D 作 x 轴的垂线交 BC 于点 E ,交 x 轴于点 F .
①求 DE + BF 的最大值;
②点 G 是 AC 的中点,若以点 C , D , E 为顶点的三角形与 △ AOG 相似,求点 D 的坐标.