如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.
2011年国家对“酒后驾车”加大了处罚力度,出台了不准酒后驾车的禁令.某记者在一停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:①偶尔喝点酒后开车;②已戒酒或从来不喝酒;③喝酒后不开车或请专业司机代驾;④平时喝酒,但开车当天不喝酒.将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调查了▲名司机;(2)求图甲中④所在扇形的圆心角,并补全图乙; 【小题3(3)在本次调查中,记者随机采访其中的一名司机,求他属第②种情况的概率; 【小题4(4)请估计开车的10万名司机中,不违反“酒驾”禁令的人数.
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到元购物券,至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
(每题4分,共8分)(1)计算::(2)如图,在△ABC中,∠C=90º,∠ABC=30º,AC=m,延长CB至点D,使BD=AB. 求tan75º的值.
(本小题满分12分)已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.(1)填空:菱形ABCD的边长是▲ 、面积是▲ 、高BE的长是▲ ;(2)探究下列问题: ①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值; ②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t =" 4" 秒时的情形,并求出k的值.
(本小题满分10分)已知:如图,⊙与轴交于C、D两点,圆心的坐标 为(1,0),⊙的半径为,过点C作⊙的切线交轴于点B(-4,0)
(1)求切线BC的解析式;(2)若点P是第一象限内⊙上一点,过点P作⊙A的切线与直线BC相交于点G, 且∠CGP=120°,求点的坐标;(3)向左移动⊙(圆心始终保持在轴上),与直线BC交于E、F,在移动过程中是否存在点,使得△AEF是直角三角形?若存在,求出点的坐标,若不存在,请说明理由.