实验北校举行运动会,组委会招墓了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10 人和6人喜爱运动,其余不喜爱.(1)根据以上数据完成以下列联表:(2)根据列联表的独立性检验,有多大的把握认为性别与喜爱运动有关?(3)从不喜爱运动的女志愿者中和喜爱运动的女志愿者中各选1人,求其中不喜爱运动的女生甲及喜爱运动的女生乙至少有一人被选取的概率. 参考公式 :(其中)
某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.图是甲流水线样本的频率分布直方图,表是乙流水线样本频数分布表.(Ⅰ) 若以频率作为概率,试估计从甲流水线上任取件产品,求其中合格品的件数的数学期望; (Ⅱ)从乙流水线样本的不合格品中任意取件,求其中超过合格品重量的件数的分布列;(Ⅲ)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关” .
附:下面的临界值表供参考:(参考公式:,其中)
已知函数 (I)求的单调递增区间;(II)在中,三内角的对边分别为,已知,成等差数列,且,求的值.
已知数列满足:,,数列满足,.(Ⅰ)求数列的通项; (Ⅱ)求证:数列为等比数列;并求数列的通项公式.
选修4—5:不等式选讲 设正有理数是的一个近似值,令.(Ⅰ)若,求证:; (Ⅱ)比较与哪一个更接近于?
选修4-4:坐标系与参数方程选讲. 在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为.(1) 求圆C的极坐标方程;(2) 在以极点O为原点,以极轴为x轴正半轴建立的直角坐标系中,直线的参数方程为 (t为参数),直线与圆C相交于A,B两点,已知定点,求|MA|·|MB|。