将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?(3)如图③,在B1C上取一点E,连接BE、P1E,设BC=1,当BE⊥P1B时,求△P1BE面积的最大值.
近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计图.
(1)求出本次被调查的学生数; (2)请求出统计表中a的值; (3)求各组人数的众数; (4)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.
如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上. (1)把“鱼”向右平移5个单位长度,并画出平移后的图形. (2)写出A、B、C三点平移后的对应点A′、B′、C′的坐标.
如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个). (1)你添加的条件是 . (2)添加条件后,请说明△ABC≌△ADE的理由.
若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,,x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”. (1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由; (2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.
如图所示,已知四边形OABC是菱形,∠O=60°,点M是边OA的中点,以点O为圆心,r为半径作⊙O分别交OA,OC于点D,E,连接BM.若BM=,的长是.求证:直线BC与⊙O相切.