将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?(3)如图③,在B1C上取一点E,连接BE、P1E,设BC=1,当BE⊥P1B时,求△P1BE面积的最大值.
.已知关于x的方程mx2+(3m+1)x+3=0(m≠0). (1)求证:方程总有两个实数根; (2)若方程的两个实数根都是整数,求正整数m的值;
如图:△ABC是边长为4的等边三角形,AB在X轴上,点C在第一象限,AC与Y轴交于点D,点A的坐标为(-1,0) (1)求 B、C、D三点的坐标; (2)抛物线经过B、C、D三点,求它的解析式;
(1)解方程: (2)解方程:x(x-3)+x-3=0
如图,在等边三角形ABC中,AB=6,AD⊥BC于点D,点P在边AB上运动,过点P作PE∥BC与边AC交于点E,连接ED,以PE,ED为邻边作▱PEDF,设▱PEDF与△ABC重叠部分图形的面积为y,线段AP的长为x(0<x<6). (1)求线段PE的长(用含x的代数式表示); (2)当四边形PEDF为菱形时,求x的值; (3)求y与x之间的函数关系式.
某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程. (1)该项绿化工程原计划每天完成多少米2? (2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?