将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?(3)如图③,在B1C上取一点E,连接BE、P1E,设BC=1,当BE⊥P1B时,求△P1BE面积的最大值.
如图, ⊙ O 与等边 ΔABC 的边 AC , AB 分别交于点 D , E , AE 是直径,过点 D 作 DF ⊥ BC 于点 F .
(1)求证: DF 是 ⊙ O 的切线;
(2)连接 EF ,当 EF 是 ⊙ O 的切线时,求 ⊙ O 的半径 r 与等边 ΔABC 的边长 a 之间的数量关系.
2021年是中国共产党建党100周年华诞.“五一”后某校组织了八年级学生参加建党100周年知识竞赛,为了了解学生对党史知识的掌握情况,学校随机抽取了部分同学的成绩作为样本,把成绩按不及格、合格、良好、优秀四个等级分别进行统计,并绘制了如下不完整的条形统计图与扇形统计图:
请根据图中提供的信息解答下列问题:
(1)根据给出的信息,将这两个统计图补充完整(不必写出计算过程);
(2)该校八年级有学生650人,请估计成绩未达到“良好”及以上的有多少人?
(3)“优秀”学生中有甲、乙、丙、丁四位同学表现突出,现从中派2人参加区级比赛,求抽到甲、乙两人的概率.
如图,在 ΔABC 中, D 在 AC 上, DE / / BC , DF / / AB .
(1)求证: ΔDFC ∽ ΔAED ;
(2)若 CD = 1 3 AC ,求 S ΔDFC S ΔAED 的值.
先化简再求值: ( a - 2 + 1 a ) ÷ ( a - 1 ) 2 | a | ,其中 a 使反比例函数 y = a x 的图象分别位于第二、四象限.
计算: 16 + ( 4 - π ) 0 + ( - 1 ) - 1 - 6 sin 30 ° .