袋中装有编号为的球个,编号为的球个,这些球的大小完全一样。(1)从中任意取出四个,求剩下的四个球都是号球的概率;(2)从中任意取出三个,记为这三个球的编号之和,求随机变量的分布列及其数学期望.
(本小题满分12分) 某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60)...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题: (1)求成绩落在[70,80)上的频率,并补全这个频率分布直方图; (2)估计这次考试的及格率(60分及以上为及格); (3)把90分以上(包括90分)视为成绩优秀,那么从成绩是60分以上(包括60分)的学生中选一人,求此人成绩优秀的概率.
(本题满分12分) 已知命题p:方程有两个不相等的实根; q:不等式的解集为R; 若p或q为真,p且q为假,求实数m的取值范围.
如图,已知抛物线C1: y=x2, 与圆C2: x2+(y+1)2="1," 过y轴上一点A(0, a)(a>0)作圆C2的切线AD,切点为D(x0, y0). (1)证明:(a+1)(y0+1)=1 (2)若切线AD交抛物线C1于E,且E为AD的中点,求点A纵坐标a.
如图,已知四棱锥S—ABCD中,△SAD是边长为a的正三角形,平面SAD⊥平面ABCD,四边形ABCD为菱形,∠DAB=60°,P为AD中点,Q为SB中点,(1)求证:PQ∥平面SCD;(2)求二面角B—PC—Q的正切值的大小。
如图所示,在长方体OABC—O1A1B1C1中,OA=2,AB=3,AA1=2。作OD⊥AC于D,利用空间坐标系求点O1到点D的距离。