设是椭圆上不关于坐标轴对称的两个点,直线交轴于点(与点不重合),O为坐标原点. (1)如果点是椭圆的右焦点,线段的中点在y轴上,求直线AB的方程; (2)设为轴上一点,且,直线与椭圆的另外一个交点为C,证明:点与点关于轴对称.
在平面直角坐标系中,点,,其中. (1)当时,求向量的坐标; (2)当时,求的最大值.
给定数列 (1)判断是否为有理数,证明你的结论; (2)是否存在常数.使对都成立? 若存在,找出的一个值, 并加以证明; 若不存在,说明理由.
已知抛物线的焦点到准线的距离为.过点 作直线交抛物线与两点(在第一象限内). (1)若与焦点重合,且.求直线的方程; (2)设关于轴的对称点为.直线交轴于. 且.求点到直线的距离的取值范围.
如图,四棱柱中,.为平行四边形,, , 分别是与的中点. (1)求证:; (2)求二面角的平面角的余弦值.
某电视台“挑战60秒”活动规定上台演唱: (I)连续达到60秒可转动转盘(转盘为八等分圆盘)一次进行抽奖,达到90秒可转两次,达到120秒可转三次(奖金累加). (II)转盘指针落在I、II、III区依次为一等奖(500元)、二等奖(200元)、三等奖(100元),落在其它区域不奖励. (III)演唱时间从开始到三位评委中至少1人呜啰为止,现有一演唱者演唱时间为100秒. (1)求此人中一等奖的概率; (2)设此人所得奖金为,求的分布列及数学期望.