设是椭圆上不关于坐标轴对称的两个点,直线交轴于点(与点不重合),O为坐标原点. (1)如果点是椭圆的右焦点,线段的中点在y轴上,求直线AB的方程; (2)设为轴上一点,且,直线与椭圆的另外一个交点为C,证明:点与点关于轴对称.
已知函数. (I)将写成的形式,并求其图象对称中心的横坐标; (II)如果△ABC的三边a、b、c满足b2= a c,且边b所对的角为,试求的范围及此时函数的值域.
如图,四棱锥P-ABCD的底面是矩形,侧面PAD 是正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点. (I)试判断直线PB与平面EAC的关系 (文科不必证明,理科必须证明); (II)求证:AE⊥平面PCD; (III)若AD=AB,试求二面角A-PC-D 的正切值.
(本小题满分12分)已知数列满足,(,), 若数列是等比数列.(1)求数列的通项公式;(2)求证:当为奇数时,;(3)求证:().
已知函数,其中为大于零的常数.(1)若函数在上单调递增,求的取值范围;(2)求函数在区间上的最小值;(3)求证:对于任意的且时,都有成立.
已知,将的图象向左平移个单位后所得的图象关于对称.(1)求实数,并求出取得最大值时的集合;(2)求的最小正周期,并求在上的值域.