列方程解应用题:王亮的父母每天坚持走步锻炼. 今天王亮的妈妈以每小时3千米的速度走了10分钟后,王亮的爸爸刚好看完球赛,马上沿着妈妈所走的路线以每小时4千米的速度追赶,求爸爸追上妈妈时所走的路程.
“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A,B,C,D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图 请根据以上信息回答: (1)本次参加抽样调查的居民有________人; (2)扇形统计图中:a=________,b=_________,并把条形统计图补充完整; (3)若有外型完全相同的A,B,C,D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
先化简,再求值:,其中x是整数且-3﹤x﹤1.
如图,经过原点的抛物线与轴的另一个交点为A.过点P(1,)作直线PM⊥轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连结CB,CP. (1)当=3时,求点A的坐标和BC的长; (2)当>1时,连结CA,当CA⊥CP时,求的值. (3)过点P作PE⊥PC且PE =PC,问是否存在,使得点E落x轴在上?若存在,求出所有满足要求的的值,并写出相对应的点E坐标;若不存在,请说明理由.
如图,△ABC中,E是AC上一点,且AE =AB,,以AB为直径的⊙交AC于点D,交EB于点F. (1)求证:BC与⊙O相切; (2)若AB=8,sin∠EBC=,求AC的长.
某私营服装厂根据2014年市场分析,决定2015年调整服装制作方案,准备每周(按120工时计算)制作西服、休闲服、衬衣共360件,且衬衣至少60件。已知每件服装的收入和所需工时如下表:
设每周制作西服x件,休闲服y件,衬衣z件。 (1)请你分别从件数和工时数两个方面用含有x、y 的代数式表示衬衣的件数z。 (2)求y与x之间的函数关系式。 (3)问每周制作西服、休闲服、衬衣各多少件时,才能使总收入最高?最高总收入是多少?