先化简,再求值(﹣1)÷,其中x=2sin60°+1.
在平面直角坐标系中,直线l过点M(3,0),且平行于y轴. (1)如果△ABC三个顶点的坐标分别是A(-2,0)、B(-1,0)、C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标; (2)如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是点P1,点P1是关于直线l的对称点是点P2,求P P2的长.
如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC. (1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形) (2)请选择(1)中的一种情形,写出证明过程.
如图,在△ABC中,∠C=60°,∠A=40°. (1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明); (2)求证:BD平分∠CBA.
如图①所示,直线:与轴负半轴、轴正半轴分别交于、两点.(1)当时,试确定直线的解析式; (2)在(1)的条件下,如图②所示,设为延长线上一点,连接,过、两点分别作于,于,若,求M点的坐标; (3)当取不同的值时,点在轴正半轴上运动,分别以、为边在第一、第二象限作等腰直角和等腰直角,连交轴于点,问当点在轴上运动时,试猜想△ABP的面积是否改变,若不变,请求出其值;若改变,请说明理由. (4)当取不同的值时,点在轴正半轴上运动,以为边在第二象限作等腰直角,则动点E在直线_______________________________上运动.(直接写出直线的表达式)
甲、乙两车同时出发从A地前往B地,乙行驶途中有一次停车修理,修好后乙车的行驶速度是原来的2倍.两车距离A地的路程y(千米)与行驶时间x(时)的函数图象如图所示. (1)乙车到达B地所用的时间a的值为 ; (2)行驶过程中,两车出发多长时间后首次相遇? (3)当x=3时,甲、乙两车之间的距离是 千米;