在平面直角坐标系xoy中,已知椭圆C:=1(a>b≥1)的离心率e=,且椭圆C上的点到点Q (0,3)的距离最大值为4,过点M(3,0)的直线交椭圆C于点A、B.(1)求椭圆C的方程。(2)设P为椭圆上一点,且满足(O为坐标原点),当|AB|<时,求实数t的取值范围.
(本题满分12分).如图,在三棱柱ABC-中,点E,D分别是与BC的中点.求证:平面EB//平面AD.
(本题满分12分).画出右边水平放置的几何体的三视图.
已知离心率为的椭圆过点,是坐标原点.(1)求椭圆的方程;(2)已知点为椭圆上相异两点,且,判定直线与圆的位置关系,并证明你的结论.
已知函数在处取得极值.(1)求的值;(2)若关于的方程在区间上有实根,求实数的取值范围.
如图,四棱锥中,底面是平行四边形,侧面,点在侧棱上,且.(1)求证:平面平面;(2)若与所成角为,二面角的大小为,求与平面所成角的大小.