已知离心率为的椭圆过点,是坐标原点.(1)求椭圆的方程;(2)已知点为椭圆上相异两点,且,判定直线与圆的位置关系,并证明你的结论.
(本小题满分13分)在等比数列中,.(1)求等比数列的通项公式;(2)若等差数列中,,求等差数列的前项的和,并求的最大值.
(本小题满分13分)有20名学生参加某次考试,成绩(单位:分)的频率分布直方图如图所示:(1)求频率分布直方图中的值;(2)分别求出成绩落在中的学生人数;(3)从成绩在的学生中任选2人,求所选学生的成绩都落在中的概率.
(本小题满分13分)已知函数 (1)求函数的最小正周期;(2)当时,求函数的最大值及取得最大值时的值.
(本小题满分13分)已知数列满足,,数列的前n项和为,,其中.(1)求的值;(2)证明:数列为等比数列;(3)是否存在,使得 若存在,求出所有的n的值;若不存在,请说明理由.
(本小题满分14分)已知椭圆C : , 经过点P,离心率是.(1)求椭圆C的方程;(2)设直线与椭圆交于两点,且以为直径的圆过椭圆右顶点,求证:直线l恒过定点.