如图所示,现有一张边长为4的正方形纸片,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC. 求证:(1)点F是DC上一点,连接EF,交AC于点O(如图1),△AOE∽△COF; (2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG是菱形.
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,每件衬衫应降价多少元? (2)每件衬衫降价多少元,商场平均每天盈利最多?
一次函数的图像与反比例函数的图象交于A(-2,1),B(1,n)两点. (1)试确定上述反比例函数和一次函数的表达式; (2)求△OAB的面积. (3)写出反比例函数值大于一次函数值的自变量x的取值范围.
如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD平行于AB,并与弧AB相交于点M、N. (1)求线段OD的长; (2)若tan∠C=,求弦MN的长.
如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB. (1)求证:直线BF是⊙O的切线; (2)若AB=5,sin∠CBF=,求BC和BF的长.