如图所示,现有一张边长为4的正方形纸片,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
求x的值与计算 (1)4x2=81 (2)
如图,在直角坐标系中,已知P(-2,-1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点M的坐标.(2)已知点N(0,2)为y轴上的一点,求经过P、M、N三点的抛物线的解析式,并求出该抛物线的顶点坐标.(3)点T在运动过程中,是否存在某个时刻使△MTO为等腰三角形?若存在,求出点T的坐标.若不存在,请说明理由.
在平行四边形ABCD中,过点D作DE⊥AB与点E,点F在边CD上,DF=BE,连接AF、BF.(1)求证:四边形BFDE是矩形.(2)若CF=3,BF=4,DF=5,求证:△ADF是等腰三角形.
“圆材埋壁”是我国古代数学著作《九章算术》中的一个问题,“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图所示,CD为⊙O的直径,CD⊥AB,垂足为E,CE=1寸,AB=1尺,求直径CD长是多少寸?”(注:1尺=10寸)
某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足关系:m=140-2x.(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?