如图,在直角坐标系中,已知P(-2,-1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点M的坐标.(2)已知点N(0,2)为y轴上的一点,求经过P、M、N三点的抛物线的解析式,并求出该抛物线的顶点坐标.(3)点T在运动过程中,是否存在某个时刻使△MTO为等腰三角形?若存在,求出点T的坐标.若不存在,请说明理由.
先化简,再选择一个你喜爱的数代入求值:.
已知抛物线y=x2-4与x轴交于A,B两点(点A在点B的左侧).顶点为点C. (1)求直线AC的解析式; (2)试问在抛物线的对称轴上是否存在一个定点,使得过该定点的任意一条直线与抛物线有两个交点时,这两个交点与抛物线顶点的连线互相垂直?并说明理由.
已知:如图1,在四边形ABCD中,AB∥CD,∠B=∠D. (1)求证:四边形ABCD是平行四边形; (2)过点A作AE⊥BC于E,AF⊥CD于F,如图2,若CF=2,CE=5,四边形ABCD的周长为28.求EF的长度.
已知点P是函数y=|x+1|图象上的点,点O(0,0),A(1,),求△OAP的面积S与x的函数关系式.
已知一次函数y=mx+b(m<0)与反比例函数y=相交于点A(1,3)及点B,当△AOB的面积为4时,求m的值.