如图,在直角坐标系中,已知P(-2,-1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点M的坐标.(2)已知点N(0,2)为y轴上的一点,求经过P、M、N三点的抛物线的解析式,并求出该抛物线的顶点坐标.(3)点T在运动过程中,是否存在某个时刻使△MTO为等腰三角形?若存在,求出点T的坐标.若不存在,请说明理由.
在水果销售旺季,某水果店购进一优质水果,进价为20元 / 千克,售价不低于20元 / 千克,且不超过32元 / 千克,根据销售情况,发现该水果一天的销售量 y (千克)与该天的售价 x (元 / 千克)满足如下表所示的一次函数关系.
销售量 y (千克)
…
34.8
32
29.6
28
售价 x (元 / 千克)
22.6
24
25.2
26
(1)某天这种水果的售价为23.5元 / 千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
如图,正方形 ABCD 的对角线交于点 O ,点 E 、 F 分别在 AB 、 BC 上 ( AE < BE ) ,且 ∠ EOF = 90 ° , OE 、 DA 的延长线交于点 M , OF 、 AB 的延长线交于点 N ,连接 MN .
(1)求证: OM = ON .
(2)若正方形 ABCD 的边长为4, E 为 OM 的中点,求 MN 的长.
某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向 A 区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区域的可能性相同(若指针指向分界线,则重新转动转盘)
(1)若顾客选择方式一,则享受9折优惠的概率为 ;
(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.
为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从 A :文学鉴赏, B :科学探究, C :文史天地, D :趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:
(1)本次调查的总人数为 人,扇形统计图中 A 部分的圆心角是 度.
(2)请补全条形统计图.
(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?
如图,吊车在水平地面上吊起货物时,吊绳 BC 与地面保持垂直,吊臂 AB 与水平线的夹角为 64 ° ,吊臂底部 A 距地面 1 . 5 m .(计算结果精确到 0 . 1 m ,参考数据 sin 64 ° ≈ 0 . 90 , cos 64 ° ≈ 0 . 44 , tan 64 ° ≈ 2 . 05 )
(1)当吊臂底部 A 与货物的水平距离 AC 为 5 m 时,吊臂 AB 的长为 m .
(2)如果该吊车吊臂的最大长度 AD 为 20 m ,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)