列方程或方程组解应用题:为保证“燕房线”轻轨建设,我区对一条长2 500米的道路进行改造.在改造了1 000米后,为了减少施工对交通造成的影响,采用了新的施工工艺,使每天的工作效率是原来的1.5倍,结果提前5天完成任务.求原来每天改造道路多少米?
计算:
如图.等腰直角三角形ABC中,∠A=90°,P为BC的中点,小明拿着含45°角的透明三角形,使45°角的顶点落在点P,且绕P旋转. (1)如图①:当三角板的两边分别AB、AC交于E、F点时,试说明△BPE∽△CFP. (2)将三角板绕点P旋转到图②,三角板两边分别交BA延长线和边AC于点EF. 探究1:△BPE与△CFP.还相似吗?(只需写结论) 探究2:连接EF,△BPE与△EFP是否相似?请说明理由.
已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF.
如图,在平行四边形ABCD中,于E,于F,BD与AE、AF分别相交于G、H. (1)求证:△ABE∽△ADF; (2)若,求证:四边形ABCD是菱形.
如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s的速度向点C移动,动点Q从C出发以1cm/s的速度向点A移动,如果动点P、Q同时出发,要使△CBA与C、P、Q三点构成的三角形相似,所需要的时间是多少秒?