如图,圆与坐标轴交于点.⑴求与直线垂直的圆的切线方程;⑵设点是圆上任意一点(不在坐标轴上),直线交轴于点,直线交直线于点,①若点坐标为,求弦的长;②求证:为定值.
设定义在R上的函数,对任意有,且当时,恒有,(1)求;(2)判断该函数的奇偶性;(3)求证: 时 ,为单调递增函数.
已知函数 且此函数图象过点(1,5).(1)求实数m的值;(2)判断奇偶性;(3)判断函数在上的单调性?并用定义证明你的结论.
已知二次函数,(1)若写出函数的单调增区间和减区间(2)若求函数的最大值和最小值:(3)若函数在上是单调函数,求实数的取值范围.
若,,,(1)求的值(2)求.
已知全集,集合,(1)用列举法表示集合A与B;(2)求及.