如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.(1)求椭圆C的方程;(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
((本题15分) 已知点(1,)是函数且)的图象上一点,等比数列的前n项和为,数列的首项为c,且前n项和满足-=+(n2) (1)求数列和的通项公式; (2)若数列{前n项和为,问>的最小正整数n是多少?
((本题15分) 已知函数, (Ⅰ)若曲线在点处的切线斜率为3,且时有极值,求函数的解析式; (Ⅱ)在(Ⅰ)的条件下,求函数在上的最大值和最小值。
((本题14分) 已知:A、B、C是的内角,分别是其对边长,向量,, (Ⅰ)求角A的大小; (Ⅱ)若求的长.
(本题14分) 设函数 (1)求函数的最小正周期和单调递增区间; (2)当时,的最大值为2,求的值.