如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
已知二次函数的图象如图6所示,它与轴的一个交点坐标为,与轴的交点坐标为(0,3).(1)求出此二次函数的解析式;(2)根据图象,写出函数值为正数时,自变量的取值范围.
已知,求的值.
如图5,在△ABC和△ADE中,有以下四个论断:① AB=AD,② AC=AE,③ ∠C=∠E,④ BC=DE,请以其中三个论断为条件,余下一个论断为结论,写出一个真命题,并加以证明.
解不等式:
.解不等式,并把它的解集在数轴上表示出来.