如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)求证:AC2=AD•AB;(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.
(1)计算:(-2011)0+()-1+|-2|-2cos60°; (2)解方程:(2x-1)2=x(3x+2)-7.
如图,抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B. (1)求抛物线的解析式; (2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标; (3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
如图,点C是半圆O的半径OB上的动点,作PC⊥AB于C.点D是半圆上位于PC左侧的点,连接BD交线段PC于E,且PD=PE. (1)求证:PD是⊙O的切线; (2)若⊙O的半径为4,PC=8,设OC=x,PD2=y. ①求y关于x的函数关系式; ②当x=时,求tanB的值.
我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=60°, (1)求山坡高度; (2)为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B 沿BC削进到E处,问BE至少是多少米(结果保留根号)?
已知:如图所示,△ABC为任意三角形,若将△ABC绕点C顺时针旋转180° 得到△DEC. (1)试猜想AE与BD有何关系?并且直接写出答案. (2)若△ABC的面积为4cm2,求四边形ABDE的面积; (3)请给△ABC添加条件,使旋转得到的四边形ABDE为矩形,并说明理由.