一农民有基本农田2亩,根据往年经验,若种水稻,则每季亩产量为400公斤;若种花生,则每季亩产量为100公斤.但水稻成本较高,每季每亩240元,而花生只需80元;且花生每公斤卖5元,稻米每公斤卖3元.现该农民手头有400元,两种作物各种多少,才能获得最大收益?
已知椭圆:()过点,其左、右焦点分别为,且.(1)求椭圆的方程;(2)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明理由.
已知数列满足:(其中常数).(1)求数列的通项公式;(2)当时,数列中是否存在不同的三项组成一个等比数列;若存在,求出满足条件的三项,若不存在,说明理由。
设为正方形的中心,四边形是平行四边形,且平面平面,若.(1)求证:平面.(2)线段上是否存在一点,使平面?若存在,求的值;若不存在,请说明理由.
某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:后得到如下图的频率分布直方图.(1)若该校高一年级共有学生人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(2)若从数学成绩在与两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率。
在中,分别是角的对边,,.(1)求的值;(2)若,求边的长.