(本小题满分12分)某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C处进行该仪器的垂直弹射,观测点A、B两地相距100米,,在A地听到弹射声音的时间比B地晚秒,A地测得该仪器在C处时的俯角为15°A地测得最高点H时的仰角为30°,求该仪器的垂直弹射高度CH(声音的传播速度为340米/秒)
某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元. (1)求该企业使用该设备年的年平均污水处理费用(万元); (2)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?
在直三棱柱ABC—A1B1C1中,AB1⊥BC1,AB=CC1=a,BC=b. (1)设E、F分别为AB1、BC1的中点,求证:EF∥平面ABC;(2)求证:AC⊥AB;(3)求四面体的体积.
已知函数和点,过点作曲线的两条切线、,切点分别为、. (1)求证:为关于的方程的两根; (2)设,求函数的表达式; (3)在(2)的条件下,若在区间内总存在个实数(可以相同),使得不等,则m的最大值,为正整数
已知圆A:与轴负半轴交于B点,过B的弦BE与轴正半轴交于D点,且2BD=DE,曲线C是以A,B为焦点且过D点的椭圆。(1)求椭圆的方程;(2)点P在椭圆C上运动,点Q在圆A上运动,求PQ+PD的最大值。
已知,⑴求的值;⑵求的值.