在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos=2.(1)求C1与C2交点的极坐标;(2)设P为C1的圆心,Q为C1与C2交点连线的中点.已知直线PQ的参数方程为 (t∈R为参数),求a,b的值.
设椭圆的左右焦点分别为、,是椭圆上的一点,,坐标原点到直线的距离为. (1)求椭圆的方程; (2)设是椭圆上的一点,,连接QN的直线交轴于点,若,求直线的斜率.
如图,已知⊥平面,∥,=2,且是的中点. (1)求证:∥平面; (2)求证:平面BCE⊥平面; (3)求此多面体的体积.
已知数列的前项和为,且. (1)求数列的通项公式; (2)设,,求使成立的最小的正整数的值.
在中,内角所对的边分别为,且 (1)若,求的值; (2)若,且的面积,求和的值.
对某校高一年级学生参加社区服务次数统计,随机抽去了名学生作为样本,得到这名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表如下: (1)求出表中的值; (2)在所取样本中,从参加社区服务的次数不少于次的学生中任选人,求至少一人参加社区服务次数在区间内的概率.