在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos=2.(1)求C1与C2交点的极坐标;(2)设P为C1的圆心,Q为C1与C2交点连线的中点.已知直线PQ的参数方程为 (t∈R为参数),求a,b的值.
已知函数(). (Ⅰ)当时,求函数的极值; (Ⅱ)若对任意,不等式恒成立,求实数的取值范围.
已知椭圆:的离心率为,左焦点为. (Ⅰ)求椭圆的方程; (Ⅱ)若直线与曲线交于不同的、两点,且线段的中点在圆上,求的值.
某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110), [140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题. (Ⅰ)求分数在[120,130)内的频率; (Ⅱ)若在同一组数据中,将该组区间的中点值(如:组区间[100,110)的中点值为=105)作为这组数据的平均分,据此估计本次考试的平均分; (Ⅲ)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.
数列的前项和为,. (Ⅰ)设,证明:数列是等比数列; (Ⅱ)求数列的前项和.
如图,是边长为2的正方形,⊥平面,,//且. (Ⅰ)求证:平面⊥平面; (Ⅱ)求几何体的体积.