(本小题满分13分)已知定义在上的三个函数且在处取得极值. (Ⅰ)求的值及函数的单调区间;(Ⅱ)求证:当时,恒有成立;(Ⅲ)把对应的曲线按向量平移后得到曲线,求与对应曲线的交点个数,并说明理由.
已知直线经过抛物线的焦点F,且与抛物线相交于A、B两点. (1)若,求点A的坐标; (2)若直线的倾斜角为,求线段AB的长.
在正三棱柱ABC-A1B1C1中,若BB1=1,AB=,求AB1与C1B所成角的大小。
已知椭圆的两焦点是F1(0,-1),F2(0,1),离心率e= (1)求椭圆方程;(2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2。
已知函数f(x)=(1+x)2-4a lnx(a∈N﹡). (Ⅰ)若函数f(x)在(1,+∞)上是增函数,求a的值; (Ⅱ)在(Ⅰ)的条件下,若关于x的方程f(x)=x2-x+b在区间[1,e]上恰有一个实根,求实数b的取值范围.
已知点列在直线上,P1为直线轴的交点,等差数列的公差为1 。 (1)求、的通项公式;; (2)若,试证数列为等比数列,并求的通项公式。 (3).