已知函数.(1)当时,求的最小值;(2)若函数在区间上为单调函数,求实数的取值范围;(3)当时,不等式恒成立,求实数的取值范围.
(本小题满分12分)某班全部名学生在一次百米测试中,成绩全部介于13秒和18秒之间。将测试结果按如下方式分为五组:第一组[13,14);第二组[14,15);…;第五组[17,18],表是按上述分组方式得到的频率分布表。
(1)求及上表中的的值;(2)设m,n是从第一组或第五组中任意抽取的两名学生的百米测试成绩,求事件“”的概率.
.(本小题满分12分)如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.(1)求证:DC平面ABC;(2)设,求三棱锥A-BFE的体积.
(本小题满分12分)在中,已知内角,设内角,周长为.(1)求函数的解析式和定义域;(2)求的最大值.
函数是定义在(-1,1)上的奇函数,且 (1)求函数的解析式; (2)利用定义证明在(-1,1)上是增函数; (3)求满足的的范围.
(12分)季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售. (1)试建立价格P与周次t之间的函数关系式. (2)若此服装每件进价与周次t之间的关系为, 试问该服装第几周每件销售利润L最大?(注:每件销售利润=售价-进价)