已知空间4个球,它们的半径分别为2, 2, 3, 3,每个球都与其他三个球外切,另有一个小球与这4个球都外切,则这个小球的半径为( )
如图,圆柱的轴截面ABCD是正方形,点E在底面圆周上,点F在DE上,且AF⊥DE,若圆柱的侧面积与△ABE的面积之比等于4π。 (Ⅰ)求证:AF⊥BD; (Ⅱ)求二面角A―BD―E的正弦值。
已知定义在R上的函数,其中a为常数.[来(1)若x=1是函数的一个极值点,求a的值;(2)若函数在区间(-1,0)上是增函数,求a的取值范围;[(3)若函数,在x=0处取得最大值,求正数a的取值范围.
已知数列的前n项和为,且(1)求数列的通项公式;(2)设数列满足:,且,求证:;(3)求证:。
已知数列及函数f(x)=,,对于任意均有⑴试计算的值.⑵若,求数列的通项公式.⑶试比较与的大小.
已知各项均为正数的数列满足≤.(1)若,时,求的通项公式; (2)若,A=1,证明: