已知圆(1)将圆的方程化为标准方程,并指出圆心坐标和半径;(2)求直线被圆所截得的弦长。
ΔABC 的内角的对边分别为 a , b , c ,已知 a sin A + C 2 = b sin A .
(1)求 B ;
(2)若 ΔABC 为锐角三角形,且 c = 1 ,求 ΔABC 面积的取值范围.
为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成 A , B 两组,每组100只,其中 A 组小鼠给服甲离子溶液, B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:
记 C 为事件:"乙离子残留在体内的百分比不低于 5 . 5 ",根据直方图得到 P C 的估计值为 0 . 70 .
(1)求乙离子残留百分比直方图中 a , b 的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
已知实数 a ≠ 0 ,设函数 f ( x ) = a ln x + x + 1 , x > 0 .
(1)当 a = - 3 4 时,求函数 f ( x ) 的单调区间;
(2)对任意 x ∈ [ 1 e 2 , + ∞ ) 均有 f ( x ) ≤ x 2 a , 求 a 的取值范围.
注: e = 2 . 71828 . . . 为自然对数的底数.
如图,已知点 F ( 1 , 0 ) 为抛物线 y 2 = 2 px ( p > 0 ) 的焦点,过点 F 的直线交抛物线于 A , B 两点,点 C 在抛物线上,使得 △ ABC 的重心 G 在 x 轴上,直线 AC 交 x 轴于点 Q ,且 Q 在点 F 右侧.记 △ AFG , △ CQG 的面积为 S 1 , S 2 .
(1)求 p 的值及抛物线的准线方程;
(2)求 S 1 S 2 的最小值及此时点 G 的坐标.
设等差数列 { a n } 的前 n 项和为 S n , a 3 = 4 , a 4 = S 3 ,数列 { b n } 满足:对每 n ∈ N * , S n + b n , S n + 1 + b n , S n + 2 + b n 成等比数列.
(1)求数列 { a n } , { b n } 的通项公式;
(2)记 C n = a n 2 b n , n ∈ N * , 证明: C 1 + C 2 + ⋯ + C n < 2 n , n ∈ N * .