初中生的视力状况受到全社会的广泛关注,某市有关部门对全市3万名初中生视力状况进行了一次抽样调查,如图是利用所得数据绘制的频数分布直方图(长方形的高表示该组人数),根据图中所提供的信息,回答下列问题:(1)本次调查共抽测了 名学生,占该市初中生总数的百分比是 ; (2)从左到右五个小组的频率之比是 ;(3)如果视力在4.9以上(含4.9)均属正常,则全市有 名初中生的视力正常, 视力正常的合格率是 .
如图在▱ABCD中,EF∥AB,FG∥ED,DE∶EA=2∶3,EF=4,求线段CG的长.
如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2). (1)求m的值和抛物线的解析式; (2)求不等式x2+bx+c>x+m的解集.(直接写出答案)
△ABC在如图的平面直角坐标系中 (1)按要求画图:将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2. (2)直接写出三角形A1A2B的面积.
解方程: (1)3(x﹣3)2+x(x﹣3)=0; (2)x2﹣2x﹣3=0
如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个动点到达终点时,另一个动点也随之停止运动. (1)求AC、BC的长; (2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由; (4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由。