某分公司经销某种品牌产品,每件产品的成本为元,并且每件产品需向总公司交元的管理费,预计当每件产品的售价为元()时,一年的销售量为万件.(1)求该分公司一年的利润(万元)与每件产品的售价的函数关系式;(2)当每件产品的售价为多少元时,该分公司一年的利润最大?并求出的最大值.
以直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,并在两种坐标系中取相同的单位长度.已知直线l的极坐标方程为,曲线C的参数方程为(α为参数).(Ⅰ)求直线l的直角坐标方程和曲线C的普通方程;(Ⅱ)若直线l与曲线C交于A、B两点,求线段AB的长
如图,设C为线段AB的中点,BCDE是以BC为一边的正方形,以B为圆心,BD为半径的圆与AB及其延长线相交于点H及K.(Ⅰ)求证:HC·CK=BC2;(Ⅱ)若圆的半径等于2,求AH·AK的值.
已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)若,求在区间上的最大值;(III)设函数,(),试讨论函数与图象交点的个数
如图所示,在中,,,N在y轴上,且,点E在x轴上移动.(Ⅰ)求点M的轨迹方程;(Ⅱ)过点作互相垂直的两条直线,与点M的轨迹交于点A、B,与点M的轨迹交于点C、D,求的最小值.
如图,在四棱锥中,底面,, , ,是的中点.(Ⅰ)证明:;(Ⅱ)证明:平面;(Ⅲ)求二面角的正切值