以直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,并在两种坐标系中取相同的单位长度.已知直线l的极坐标方程为,曲线C的参数方程为(α为参数).(Ⅰ)求直线l的直角坐标方程和曲线C的普通方程;(Ⅱ)若直线l与曲线C交于A、B两点,求线段AB的长
如图,三棱锥P ABC中,已知PA⊥平面ABC,△ABC是边长为2的正三角形,D,E分别为PB,PC中点 (1)若PA=2,求直线AE与PB所成角的余弦值; (2)若PA,求证:平面ADE⊥平面PBC
已知椭圆:与正半轴、正半轴的交点分别为,动点是椭圆上任一点,求面积的最大值。
已知矩阵,向量,求向量,使得
已知函数(为实常数) (1)当时,求函数在上的最大值及相应的值; (2)当时,讨论方程根的个数 (3)若,且对任意的,都有,求实数a的取值范围
已知函数, (1)判断函数的奇偶性; (2)求函数的单调区间; (3)若关于的方程有实数解,求实数的取值范围