已知函数(1)求函数的最小正周期。(2)求函数的最大值及取最大值时x的集合.
设数列{}是等差数列,,时,若自然数满足,使得成等比数列,(1)求数列{}的通项公式;(2)求数列的通项公式及其前n项的和
设是三角形的内角,且和是关于方程的两个根. (1)求的值; (2)求的值.
已知为第三象限角,. (1)化简 (2)若,求的值.
设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E. (1)求轨迹E的方程,并说明该方程所表示曲线的形状; (2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程; (3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
(1)甲盒中有红,黑,白三种颜色的球各3个,乙盒子中有黄,黑,白三种颜色的球各2个,从两个盒子中各取1个球,求取出的两个球是不同颜色的概率。 (2)在单位圆的圆周上随机取三点A、B、C,求是锐角三角形的概率。