已知椭圆经过点,且两焦点与短轴的两个端点的连线构成一正方形.(1)求椭圆的方程;(2)直线与椭圆交于,两点,若线段的垂直平分线经过点,求(为原点)面积的最大值.
如图,在三棱锥中,,,°,平面平面,,分别为,中点. (1)求证:∥平面; (2)求证:; (3)求三棱锥的体积.
汽车的碳排放量比较大,某地规定,从2014年开始,将对二氧化碳排放量超过130g/km的轻型汽车进行惩罚性征税.检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km). 经测算得乙品牌轻型汽车二氧化碳排放量的平均值为. (1)从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过的概率是多少? (2)求表中的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性.
已知函数. (1)求的值; (2)当时,求函数的最大值和最小值.
设是一个自然数,是的各位数字的平方和,定义数列:是自然数,(,). (1)求,; (2)若,求证:; (3)当时,求证:存在,使得.
已知椭圆的一个焦点为,且离心率为. (1)求椭圆方程; (2)斜率为的直线过点,且与椭圆交于两点,为直线上的一点,若△为等边三角形,求直线的方程.