已知盘中有编号为A,B,C,D的4个红球,4个黄球,4个白球(共 12个球)现从中摸出4个球(除编号与颜色外球没有区别) (1)求掐好包含字母A, B,C,D的概率;(2)设摸出的4个球中出现的颜色种数为随机变量X.求X的分布列和期望E(X).
(本小题满分12分)如图,以原点O为顶点,以y轴为对称轴的抛物线E的焦点为F(0,1),点M是上任意一点,过点M引抛物线E的两条切线分别交x轴于点S,T,切点分别为B,A。 (Ⅰ)求抛物线E的方程; (Ⅱ)求证:点S,T在以FM为直径的圆上
(本小题满分12分)已知数列为等差数列,且.为等比数列,数列的前三项依次为3,7,13。求 (1)数列,的通项公式; (2)数列的前项和。
(本小题满分10分)已知。
(本小题满分10分)选修4-5:不等式选讲 设不等式的解集为A,且 (Ⅰ)求a的值; (Ⅱ)求函数的最小值。
(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数). (Ⅰ)若直线l与曲线C相交于A、B两点,且,试求实数m值. (Ⅱ)设为曲线上任意一点,求的取值范围.