已知函数(1)求函数的周期;(2)求函数的单调递增区间;(3)若时,的最小值为– 2 ,求a的值.
(本小题满分12分)已知函数(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)若函数的图象与函数的图象在区间上有公共点,求实数的取值范围.
(本小题满分12分)数列满足:,且(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和.
(本小题满分12分)直三棱柱 是的中点. (Ⅰ)求证:;(Ⅱ)求证:.
(本小题满分12分)为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C万元与隔热层厚度cm满足关系:(,为常数),若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求的值及的表达式;(Ⅱ)隔热层修建多厚时,总费用达到最小?并求最小值.
(本小题满分12分)已知向量,,函数.(Ⅰ)求函数的对称中心;(Ⅱ)在中,分别是角的对边,且,,,且,求的值.