设,(1)若在处有极值,求a;(2)若在上为增函数,求a的取值范围.
如图所示,在△ABO中,=,=,AD与BC相交于点M,设=a,=b.试用a和b表示向量.
设两个非零向量a与b不共线,(1)若=a+b,=2a+8b,=3(a-b),求证:A、B、D三点共线;(2)试确定实数k,使ka+b和a+kb共线.
如图所示,若四边形ABCD是一个等腰梯形,AB∥DC,M、N分别是DC、AB的中点,已知=a,=b,=c,试用a、b、c表示,,+.
定理:若函数在闭区间[m,n]上是连续的单调函数,且,则存在唯一一个。已知(1)若是减函数,求a的取值范围。(2)是否存在同时成立,若存在,指出c、d之间的等式关系,若不存在,请说明理由。
已知函数时取最大值2。是集合中的任意两个元素,的最小值为。(1)求a、b的值;(2)若的值。