定理:若函数在闭区间[m,n]上是连续的单调函数,且,则存在唯一一个。已知(1)若是减函数,求a的取值范围。(2)是否存在同时成立,若存在,指出c、d之间的等式关系,若不存在,请说明理由。
己知的顶点,边上的中线所在的直线方程为,边上的高所在直线方程为,求: (1)直线方程 (2)顶点的坐标 (3)直线的方程
定义区间的区间长度为,如图是某圆拱形桥一孔圆拱的示意图.这个圆的圆拱跨度,拱高,建造时每间隔需要用一根支柱支撑,求支柱的高度所处的区间.(要求区间长度为)
己知圆心为的圆经过点和,且圆心在直线上,求圆心为的圆的标准方程.
己知一几何体的三视图,试根据三视图计算出它的表面积和体积(结果保留)
(本小题满分16分)设常数,函数. (1)当时,判断并证明函数在的单调性; (2)若函数的是奇函数,求实数a的值; (3)当时,若存在区间,使得函数在的值域为,求实数的取值范围.