(1) 求不等式的解集:(2)已知三角形的三个顶点是 求边上的高所在直线的方程;
已知函数的定义域为R,对任意,均有,且对任意都有。(1)试证明:函数在R上是单调函数;(2)判断的奇偶性,并证明。(3)解不等式。(4)试求函数在上的值域;
一片森林原来面积为,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年。为保护生态环境,森林面积至少要保留原来面积的。已知到今年为止,森林剩余面积为原来的。(1)求每年砍伐面积的百分比(用式子表示);(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?
已知函数。(1)求证:不论为何实数,在R上总为增函数;(2)确定的值,使为奇函数;
设,求函数的值域。
(1)画出函数的图象;(2)利用图象回答:取何值时①只有唯一的值与之对应?②有两个值与之对应?③有三个值与之对应?