给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.
已知:R.求证:.
在平面直角坐标系xOy中,设动点P,Q都在曲线C:(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ的中点M与定点A(1,0)间的距离为d,求d的取值范围.
已知二阶矩阵M有特征值及对应的一个特征向量,且M=.求矩阵M.
如图,△ABC内接于圆O,D为弦BC上一点,过D作直线DP // AC,交AB于点E,交圆O在A点处的切线于点P.求证:△PAE∽△BDE.
设函数,其图象与轴交于,两点,且x1<x2.(1)求的取值范围;(2)证明:(为函数的导函数);(3)设点C在函数的图象上,且△ABC为等腰直角三角形,记,求的值.