给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.
解不等式(x+2)2(x+3)(x-2)
已知:a>0 , b>0 , a+b=1,求(a+ )2+(b+ )2的最小值.
已知f(x) = ax + ,若求的范围.
已知A、B、C是直线l上的三点,O是直线l外一点,向量满足=[f(x)+2f′(1)]-ln(x+1) (Ⅰ)求函数y=f(x)的表达式; (Ⅱ)若x>0,证明:f(x)>; (Ⅲ)若不等式x2≤f(x2)+m2-2m-3对x∈[-1,1]恒成立,求实数m的取值范围.
已知数列中,,,其前项和满足.令. (Ⅰ)求数列的通项公式; (Ⅱ)若,求证:().