给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.
已知、分别是椭圆的左、右焦点,右焦点到上顶点的距离为2,若. (Ⅰ)求此椭圆的方程; (Ⅱ)点是椭圆的右顶点,直线与椭圆交于、两点(在第一象限内),又、是此椭圆上两点,并且满足,求证:向量与共线.
如图,在四棱锥中,底面是边长为的菱形,,底面, ,为的中点,为的中点. (Ⅰ)证明:直线平面; (Ⅱ)求异面直线与所成角的大小;
数列{an}中,a1=1,当时,其前n项和满足. (Ⅰ)求Sn的表达式; (Ⅱ)设,数列{bn}的前n项和为,求.
已知函数为常数). (Ⅰ)求函数的最小正周期; (Ⅱ)求函数的单调递增区间; (Ⅲ)若时,的最小值为– 2 ,求a的值.
已知函数(为实常数) . (1)当时,求函数在上的最大值及相应的值; (2)当时,讨论方程根的个数. (3)若,且对任意的,都有,求实数a的取值范围.