设P是⊙O:上的一点,以轴的非负半轴为始边、OP为终边的角记为,又向量.且.(1)求的单调减区间;网(2)若关于的方程在内有两个不同的解,求的取值范围.
在平面直角坐标系xOy中,已知曲线C的参数方程为.以直角坐标系原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.点P为曲线C上的一个动点,求点P到直线l距离的最小值
在中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D。 (1)求证: ; (2)若AC=3,求的值。
已知椭圆的离心率,左、右焦点分别为,定点P,点在线段的中垂线上. (1)求椭圆C的方程; (2)设直线与椭圆C交于M、N两点,直线的倾斜角分别为,求证:直线过定点,并求该定点的坐标.
已知函数. (1)若,求函数的最大值. (2)若在定义域内为增函数,求实数的取值范围
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下: 甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85 (1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数; (2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由.