已知函数的反函数为,设的图象上在点处的切线在y轴上的截距为,数列{}满足:.(1)求数列{}的通项公式;(2)在数列中,仅最小,求的取值范围;(3)令函数数列满足,求证:对一切n≥2的正整数都有.
已知椭圆上一点与椭圆的两个焦点的连线互相垂直.(1)求离心率和准线方程;(2)求的面积.
已知命题“方程表示焦点在轴上的椭圆”, 命题“方程表示双曲线”. (1)若是真命题,求实数的取值范围; (2)若是真命题,求实数的取值范围; (3)若“”是真命题,求实数的取值范围.
已知双曲线C的方程为: (1)求双曲线C的离心率; (2)求与双曲线C有公共的渐近线,且经过点A()的双曲线的方程。
定义在(0,+∞)上的函数f(x),对于任意的m,n∈(0,+∞),都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)<0. (1)求证:1是函数f(x)的零点; (2)求证:f(x)是(0,+∞)上的减函数; (3)当f (2)= 时,解不等式f (ax+4)>1.
当满足时,求函数的最值及相应的的值.