已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x–1)=f(3–x)且方程f(x)=2x有等根.(1)求f(x)的解析式;(2)是否存在实数m,n(m<n=,使f(x)定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m、n的值;如果不存在,说明理由.
为了对某课题进行讨论研究,用分层抽样的方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)
(1)求x,y; (2)若从高校A,C 抽取的人中选2人作专题发言,求这两人都来自高校C的概率.
记函数f(x)=的定义域为A,的定义域为B. (1)求集合A; (2)求集合B.
(本小题满分14分) 下表给出的是由n×n(n≥3,n∈N*)个正数排成的n行n列数表,表示第i行第j列的数,表中第一列的数从上到下依次成等差数列,其公差为d ,表中各行中每一行的数从左到右依次都成等比数列,且所有公比相等,公比为,若已知
(1)求的值; (2)求用表示的代数式; (3)设表中对角线上的数,,,……,组成一列数列,设Tn=+++……+求使不等式成立的最小正整数n.
(本小题满分14分)已知函数() (1) 判断函数的单调性; (2) 是否存在实数使得函数在区间上有最小值恰为? 若存在,求出的值;若不存在,请说明理由.
(本小题满分14分)已知为坐标原点,点F、T、M、P分别满足. (1) 当t变化时,求点P的轨迹方程; (2) 若的顶点在点P的轨迹上,且点A的纵坐标,的重心恰好为点F, 求直线BC的方程.