已知{an}是公比为q的等比数列,且am、am+2、am+1成等差数列.(1)求q的值;(2)设数列{an}的前n项和为Sn,试判断Sm、Sm+2、Sm+1是否成等差数列?并说明理由.
已知函数. (1)若在区间上不单调,求的取值范围; (2)若对于任意的,存在,使得,求的取值范围.
如图所示,抛物线与直线相切于点. (1)求满足的关系式,并用表示点的坐标; (2)设是抛物线的焦点,若以为直角顶角的的面积等于,求抛物线的标准方程.
如图所示,在三棱锥中,,平面⊥平面,. (1)求证:平面; (2)求直线与平面所成角的正弦值.
(已知数列满足,且. (1)设,求证是等比数列; (2)求数列的前项和.
已知函数. (1)求函数的最小正周期; (2)求函数在上的值域.