如图,在平面直角坐标系中,点,直线.设圆的半径为,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.
如图,三棱柱的侧棱平面,为等边三角形,侧面是正方形,是的中点,是棱上的点. (1)若是棱中点时,求证:平面; (2)当时,求正方形的边长.
某种产品的广告费支出z与销售额y(单位:万元)之间有如下对应数据: 若广告费支出z与销售额y回归直线方程为多一6.5z+n(n∈R). (1)试预测当广告费支出为12万元时,销售额是多少? (2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
已知在数列{}中, (1)求证:数列{}是等比数列,并求出数列{}的通项公式; (2)设数列{}的前竹项和为Sn,求Sn.
已知函数 (1)当a=1时,解不等式 (2)若存在成立,求a的取值范围.
在极坐标系中,曲线的极坐标方程为,现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数) (1)写出直线l和曲线C的普通方程; (2)设直线l和曲线C交于A,B两点,定点P(—2,—3),求|PA|·|PB|的值.