如图,在平面直角坐标系中,点,直线.设圆的半径为,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.
.已知为常数,函数()。(Ⅰ) 若函数在区间(-2,-1)上为减函数,求实数的取值范围;(Ⅱ).设 记函数,已知函数在区间内有两个极值点,且,若对于满足条件的任意实数都有(为正整数),求的最小值。
.椭圆离心率为,且过点.椭圆已知直线与椭圆交于A、B两点,与轴交于点,若,,求抛物线的标准方程。
,,P、E在同侧,连接PE、AE.求证:BC//面APE;设F是内一点,且,求直线EF与面APF所成角的大小
.已知数列的前项和为,且.若数列为等比数列,求的值;若,数列前项和为,时取最小值,求实数的取值范围.
在△ABC中,角A,B,C的对边为,向量,,且.求角C; 若, ,求△ABC面积.