在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1a>b>0的离心率为32,直线y=x被椭圆C截得的线段长为4105. (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点. (i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求∆CMN面积的最大值.
已知角的终边经过点, (1)若,求的值; (2)若且,求实数的取值范围.
已知为锐角,且,. 求.
计算:
如图,点P是正方形ABCD外一点,PA平面ABCD,PA=AB=2,且E、F分别是AB、PC的中点. (1)求证:EF//平面PAD; (2)求证:EF平面PCD; (3)求:直线BD与平面EFC所成角的大小.
在长方体ABCD-A1B1C1D1中,AB=2,BC=B1B=1,M、N分别是AD、DC的中点. (1)求证:MN//A1C1; (2)求:异面直线MN与BC1所成角的余弦值.