如图在三棱锥 P - A B C 中, D , E , F 分别为棱 P C , A C , A B 的中点,已知 P A ⊥ A C , P A = 6 , B C = 8 , D F = 5 . 求证:
(1)直线 P A / / 平面 D E F ; (2)平面 B D E ⊥ 平面 A B C .
设,. (1)当时,求曲线在处的切线方程; (2)如果存在,使得成立,求满足上述条件的最大整数; (3)如果对任意的,都有成立,求实数的取值范围
如图,四棱锥的底面是直角梯形,,,平面,,. (1)求直线与平面所成角的正弦值; (2)在线段上是否存在一点,使得异面直线与所成角余弦值等?若存在,试确定点的位置;若不存在,请说明理由.
已知等差数列满足 (1)求数列的通项公式;(2)求数列的前项和
设函数的定义域为A,不等式的解集为B. (1)求A; (2)若BA,求实数a的取值范围
已知函数. (1)求函数的单调递增区间; (2)记△的内角、、所对的边长分别为、、,若,△的面积,,求的值.