已知向量a⇀=m,cos2x,b⇀=sin2x,n,设函数fx=a⇀·b⇀,且y=fx的图象过点π12,3和点2π3,-2. (Ⅰ)求m,n的值; (Ⅱ)将y=fx的图象向左平移φ0<φ<π个单位后得到函数y=gx的图象.若y=gx的图象上各最高点到点0,3的距离的最小值为1,求y=gx的单调增区间.
(本小题满分13分)如图,已知椭圆的离心率为,其左、右顶点分别为.一条不经过原点的直线与该椭圆相交于、两点.(Ⅰ)求椭圆的方程;(Ⅱ)若,直线与的斜率分别为.试问:是否存在实数,使得?若存在,求的值;若不存在,请说明理由.
(本小题满分13分)如图,已知是圆的两条互相垂直的直径,直角梯形所在平面与圆所在平面互相垂直,其中,,,,点为线段中点.(Ⅰ)求证:直线平面;(Ⅱ)若点在线段上,且点在平面上的射影为线段的中点,请求出线段的长.
(本小题满分13分)某运动队拟在2015年3月份安排5次体能测试,规定:依次测试,只需有一次测试合格就不必参加后续的测试.已知运动员小刘5次测试每次合格的概率依次构成一个公差为的等差数列,他第一次测试合格的概率不超过,且他直到第二次测试才合格的概率为.(Ⅰ)求小刘第一次参加测试就合格的概率;(Ⅱ)在小刘参加第一、第二次测试均不合格的前提下,记小刘参加后续测试的次数为,求随机变量的分布列和数学期望.
(本小题满分13分)已知在中,角所对的边分别为,,且为钝角.(Ⅰ)求角的大小;(Ⅱ)若,求的取值范围.
(本小题满分13分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)设直线与椭圆交于、,点关于轴的对称点(与不重合),则直线与轴是否交于一定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.