已知函数f(x)=ex-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1. (I)求a的值及函数f(x)的极值; (II)证明:当x>0时,x2<ex; (III)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞),恒有x2<cex.
已知集合,问 (1)若集合A中至多有一个元素,求的取值范围; (2)若集合A中至少有一个元素,求的取值范围。
求下列函数的定义域: (1)(2)
已知A、B、C是直线l上的三点,向量,,满足: -[y+2f /(1)]+ln(x+1)=. (Ⅰ)求函数y=f(x)的表达式; (Ⅱ)若x>0,证明:f(x)>; (Ⅲ)若不等式x2≤f(x2)+m2-2bm-3时,x∈[-1,1]及b∈[-1,1]都恒成立,求实数m的取值范围.
已知函数,(1)当时,若,试求;(2)若函数在区间上是增函数,求实数的取值范围.
设关于x的一元二次方程(1)若是从0,1,2,3四个数中任取一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率。(2)若是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.