数列{an}的前n项和记为Sn,(1)求{an}的通项公式(2)等差数列{bn}的中,,求数列的前n项和为Tn
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为 (t为参数,0<a<),曲线C的极坐标方程为.(1)求曲线C的直角坐标方程;(2)设直线l与曲线C相交于A、B两点,当a变化时,求|AB|的最小值.
如图,已知⊙O是的外接圆,是边上的高,是⊙O的直径.(1)求证:;(2)过点作⊙O的切线交的延长线于点,若,求的长.
设.(Ⅰ)若,讨论的单调性;(Ⅱ)时,有极值,证明:当时,
椭圆的左、右焦点分别为和,且椭圆过点.(Ⅰ)求椭圆的方程;(Ⅱ)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点,试判断的大小是否为定值,并说明理由.
在如图所示的几何体中,平面平面,四边形为平行四边形,.(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积.