如图,在四棱锥 A - B C D E 中,平面 A B C ⊥ 平面 B C D E ; ∠ C D E = ∠ B E D = 90 ° , A B = C D = 2 , D E = B E = 1 , A C = 2 . (1)证明: A C ⊥ 平面 B C D E ; (2)求直线 A E 与平面 A B C 所成的角的正切值.
设函数=的图象的对称中心为点(1,1). (1)求的值; (2)若直线=(∈R)与的图象无公共点,且<2+,求实数的取值范围.
、已知的图象过点(-1,-6),且函数的图象关于y轴对称。 (1)求m,n的值及函数的单调区间; (2)若a>0,求函数在区间内的极值。
已知求的值。
(14分)已知函数. (1)求函数的单调区间和极值. (2)若对满足的任意实数恒成立,求实数的取值范 围(这里是自然对数的底数). (3)求证:对任意正数、、、,恒有.
(12分)设数列满足:,且当时,. (1)比较与的大小,并证明你的结论. (2)若,其中,证明.