如图, △ A B C 和 △ B C D 所在平面互相垂直,且 A B = B C = B D = 2 , ∠ A B C = ∠ D B C = 120 ° , E , F , G 分别为 A C , D C , A D 的中点. (1)求证: E F ⊥ 平面 B C G ; (2)求三棱锥 D - B C G 的体积. 附:椎体的体积公式 V = 1 3 S h ,其中 S 为底面面积, h 为高.
如图,已知椭圆:的离心率为 ,点为其下焦点,点为坐标原点,过的直线 :(其中)与椭圆相交于两点,且满足:. (1)试用 表示 ; (2)求 的最大值; (3)若 ,求 的取值范围.
已知函数. (1)解关于的不等式; (2)若在区间上恒成立,求实数的取值范围.
已知等差数列的首项,公差,且分别是正数等比数列的项. (1)求数列与的通项公式; (2)设数列对任意均有成立,设的前项和为,求.
已知命题:复数,复数,是虚数;命题:关于的方程的两根之差的绝对值小于;若为真命题,求实数的取值范围.
(1)已知点和,过点的直线与过点的直线相交于点,设直线的斜率为,直线的斜率为,如果,求点的轨迹; (2)用正弦定理证明三角形外角平分线定理:如果在中,的外角平分线与边的延长线相交于点,则.