一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(Ⅰ)求箱产品被用户接收的概率;(Ⅱ)记抽检的产品件数为,求的分布列和数期望.
(I) 已知抛物线过焦点的动直线l交抛物线于A,B两点,O为坐标原点, 求证: 为定值;(Ⅱ)由 (Ⅰ) 可知: 过抛物线的焦点的动直线 l 交抛物线于两点, 存在定点, 使得为定值. 请写出关于椭圆的类似结论,并给出证明.
设数列的首项,前项和满足关系式: (1)求证:数列是等比数列;(2)设数列是公比为,作数列,使,求和:;(3)若,设,,求使恒成立的实数k的范围.
如图,四边形中(图1),是的中点,,,将(图1)沿直线折起,使二面角为(如图2)(1)求证:平面;(2)求二面角A—DC—B的余弦值。
已知函数f(x)=ln x-. (1)若a>0,试判断f(x)在定义域内的单调性;(2)若f(x)在[1,e]上的最小值为,求a的值;(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.
为迎接我校110周年校庆,校友会于日前举办了一次募捐爱心演出,有1000 人参加,每人一张门票,每张100元. 在演出过程中穿插抽奖活动.第一轮抽奖从这1000张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个数,满足电脑显示“中奖”,且抽奖者获得9000元奖金;否则电脑显示“谢谢”,则不中奖.(1)已知校友甲在第一轮抽奖中被抽中,求校友甲在第二轮抽奖中获奖的概率;(2)若校友乙参加了此次活动,求校友乙参加此次活动收益的期望;